Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene.

نویسندگان

  • Ralf Welsch
  • Jacobo Arango
  • Cornelia Bär
  • Bertha Salazar
  • Salim Al-Babili
  • Jesús Beltrán
  • Paul Chavarriaga
  • Hernan Ceballos
  • Joe Tohme
  • Peter Beyer
چکیده

Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), me...

متن کامل

Diallel analysis of provitamin A carotenoid and dry matter content in cassava (Manihot esculenta Crantz)

Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gen...

متن کامل

Carotenoid Analysis of Cassava Genotypes Roots (Manihot Esculenta Crantz) Cultivated in Southern Brazil Using Chemometric Tools

Manihot esculenta roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high provitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin, In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava genotypes cultivated in southe...

متن کامل

Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives

Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia...

متن کامل

Genome-Wide Discovery and Information Resource Development of DNA Polymorphisms in Cassava

Cassava (Manihot esculenta Crantz) is an important crop that provides food security and income generation in many tropical countries, and is known for its adaptability to various environmental conditions. Its draft genome sequence and many expressed sequence tags are now publicly available, allowing the development of cassava polymorphism information. Here, we describe the genome-wide discovery...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2010